NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease
نویسندگان
چکیده
BACKGROUND The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor. METHODS In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.
منابع مشابه
Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 1,3,4,5-tetrasubstituted 1H-pyrrol-2(5H)-one scaffold.
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito-borne pathogen that causes a large number of human infections each year. There are currently no vaccines or antiviral therapies available for human use against WNV. Therefore, efforts to develop new chemotherapeutics against this virus are highly desired. In this study, a WNV NS2B-NS3 protease inhibitor with a 1,3,4,5-tet...
متن کاملSynthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 2-{6-[2-(5-phenyl-4H-{1,2,4]triazol-3-ylsulfanyl)acetylamino]benzothiazol-2-ylsulfanyl}acetamide scaffold.
In recent years, clinical symptoms resulting from West Nile virus (WNV) infection have worsened in severity, with an increased frequency in neuroinvasive diseases among the elderly. As there are presently no successful therapies against WNV for use in humans, continual efforts to develop new chemotherapeutics against this virus are highly desired. The viral NS2B-NS3 protease is a promising targ...
متن کاملFunctional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 prote...
متن کاملDiscovery, synthesis, and in vitro evaluation of West Nile virus protease inhibitors based on the 9,10-dihydro-3H,4aH-1,3,9,10a-tetraazaphenanthren-4-one scaffold.
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito-borne pathogen that causes a great number of human infections each year. Neither vaccines nor antiviral therapies are currently available for human use. In this study, a WNV NS2B-NS3 protease inhibitor with a 9,10-dihydro-3H,4aH-1,3,9,10a-tetraazaphenanthren-4-one scaffold was identified by screening a small library of no...
متن کاملNMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.
The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2...
متن کامل